

Module 1: Basic Concepts of Data Structures

System Life Cycle, Algorithms, Performance Analysis, Space Complexity, Time Complexity,

Asymptotic Notation, Complexity Calculation of Simple Algorithms.

SYSTEM LIFE CYCLE (SLC)

 Good programmers regard large scale computer programs as systems that contain many

complex interacting parts. (Systems: Large Scale Computer Programs.)

 As systems, these programs undergo a development process called System life cycle.(SLC :

Development Process of Programs)

Different Phases of System Life Cycle

1. Requirements

2. Analysis

3. Design

4. Refinement and coding

5. Verification

1. Requirement Phase:

 All programming projects begin with a set of specifications that defines the purpose of that

program.

 Requirements describe the information that the programmers are given (input) and the results

(output) that must be produced.

 Frequently the initial specifications are defined vaguely and we must develop rigorous input

and output descriptions that include all cases.

2. Analysis Phase

 In this phase the problem is break down into manageable pieces.

 There are two approaches to analysis:-bottom up and top down.

 Bottom up approach is an older, unstructured strategy that places an early emphasis on coding

fine points. Since the programmer does not have a master plan for the project, the resulting

program frequently has many loosely connected, error ridden segments.

 Top down approach is a structured approach divide the program into manageable segments.

 This phase generates diagrams that are used to design the system.

 Several alternate solutions to the programming problem are developed and compared during

this phase

3. Design Phase

 This phase continues the work done in the analysis phase.

 The designer approaches the system from the perspectives of both data objects that the

program needs and the operations performed on them.

 The first perspective leads to the creation of abstract data types while the second requires the

specification of algorithms and a consideration of algorithm design strategies.

Ex: Designing a scheduling system for university

Data objects: Students, courses, professors etc

Operations: insert, remove search etc

ie. We might add a course to the list of university courses, search for the courses taught

by some professor etc.

 Since abstract data types and algorithm specifications are language independent.

 We must specify the information required for each data object and ignore coding details.

Ex: Student object should include name, phone number, social security number etc.

4. Refinement and Coding Phase

 In this phase we choose representations for data objects and write algorithms for each

operation on them.

 Data objects representation can determine the efficiency of the algorithm related to it. So we

should write algorithms that are independent of data objects first.

 Frequently we realize that we could have created a much better system. (May be we realize that

one of our alternate design is superior than this). If our original design is good, it can absorb

changes easily.

5. Verification Phase

 This phase consists of

 developing correctness proofs for the program

 Testing the program with a variety of input data.

 Removing errors.

 Correctness of Proofs

 Programs can be proven correct using proofs.(like mathematics theorem)

 Proofs are very time consuming and difficult to develop for large projects.

 Scheduling constraints prevent the development of complete sets of proofs for a larger

system.

 However, selecting algorithm that have been proven correct can reduce the number of

errors.

 Testing

 Testing can be done only after coding.

 Testing requires working code and set of test data.

 Test data should be chosen carefully so that it includes all possible scenarios.

 Good test data should verify that every piece of code runs correctly.

 For example if our program contains a switch statement, our test data should be chosen

so that we can check each case within switch statement.

Error Removal

 If done properly, the correctness of proofs and system test will indicate erroneous code.

 Removal of errors depends on the design and code.

 While debugging large undocumented program written in ‘spaghetti’ code, each

corrected error possibly generates several new errors.

 Debugging a well documented program that is divided into autonomous units that

interact through parameters is far easier. This especially true if each unit is tested

separately and then integrated into system.

ALGORITHMS

Definition: An algorithm is a finite set of instructions to accomplish a particular task. In addition, all

algorithms must satisfy the following criteria:

(1) Input. There are zero or more quantities that are externally supplied.

(2) Output. At least one quantity is produced.

(3) Definiteness. Each instruction is clear and unambiguous.

(4) Finiteness. If we trace out the instructions of an algorithm, then for all cases, the algorithm

terminates after a finite number of steps.

(5) Effectiveness. Every instruction must be basic enough to be carried out, in principle, by a person

using only pencil and paper. It is not enough that each operation be definite as in (3); it also must

be feasible.

We can describe algorithm in many ways

1. We can use a natural language like English

2. Graphical Representation called flow chart, but they work well only if the algorithm is small

and simple.

Translating a Problem into an Algorithm

Example [Selection sort]: Suppose we must devise an algorithm that sorts a collection of n > 1

elements of arbitrary type. A simple solution is given by the following

[Selection Sort: In each pass of the selection sort, the smallest element is selected from the unsorted

list and exchanged with the elements at the beginning of the unsorted list]

Consider the following depicted array as an example.

For the first position in the sorted list, the whole list is scanned sequentially. The first position where

14 is stored presently, we search the whole list and find that 10 is the lowest value.

So we replace 14 with 10. After one iteration 10, which happens to be the minimum value in the list,

appears in the first position of the sorted list.

For the second position, where 33 is residing, we start scanning the rest of the list in a linear manner.

We find that 14 is the second lowest value in the list and it should appear at the second place. We

swap these values.

After two iterations, two least values are positioned at the beginning in a sorted manner.

The same process is applied to the rest of the items in the array.

Following is a pictorial depiction of the entire sorting process −

 From those elements that are currently unsorted, find the smallest and place it next in the sorted list

 We assume that the elements are stored in an array ‘list’, such that the ith integer is stored in the ith

Position list[i], 0 <= i <n

 Algorithm 1.1 is our first attempt to deriving a solution

 1.1 Selection sort algorithm

 We are written this partially in C and partially in English

 To turn the program 1.1 into a real C program, two clearly defined sub tasks are remain: finding

the smallest integer and interchanging it with list[i].

 We can solve this by using a function

 1.2 Swap Function

 To swap their values one could call swap(&a, &b)

 We can solve the first subtask by assuming that the minimum is the list[i]. Checking list[i] with

list[i+1], list[i+2]……,list[n-1]. Whenever we find a smaller number we make it as the minimum.

We reach list[n-1] we are finished.

#include <stdio.h>

int main()

{

 int a[100], n, i, j, position, swap;

 printf("Enter number of elements");

 scanf("%d", &n);

 printf("Enter %d Numbersn", n);

 for (i = 0; i < n; i++)

 scanf("%d", &a[i]);

 for(i = 0; i < n - 1; i++)

 {

 position=i;

 for(j = i + 1; j < n; j++)

 {

 if(a[position] > a[j])

 position=j;

 }

 if(position != i)

 {

 swap=a[i];

 a[i]=a[position];

 a[position]=swap;

 }

 }

 printf("Sorted Array:n");

 for(i = 0; i < n; i++)

 printf("%dn", a[i]);

 return 0;

}

• Correctness Proof

Recursive Algorithm

 An algorithm is said to be recursive if the same algorithm is invoked in the body.

 An algorithm that calls itself is direct recursive.

 Algorithm A is said to be indirect recursive if it calls another algorithm which in turn calls A.

 These recursive mechanisms are extremely powerful, but even more importantly; many times

they can express an otherwise complex process very clearly.

PERFORMANCE ANALYSIS

An algorithm is said to be efficient and fast, if it takes less time to execute & consume less memory

space

Performance is analyzed based on 2 criteria

1. Space Complexity

2. Time Complexity

1. Space Complexity

 Analysis of space complexity of an algorithm or program is the amount of memory it needs

to run to completion.

 The space needed by a program consists of following components.

 Fixed space requirements: Independent on the number and size of the programs

input and output. It include

 Instruction Space (Space needed to store the code)

 Space for simple variable

 Space for constants

 Variable space requirements: This component consists of

 Space needed by structured variable whose size depends on the particular

instance I of the problem being solved

 Space required when a function uses recursion

 Total Space Complexity S(P) of a program is

S(P) = C + Sp(I)

Here Sp(I) is Variable space requirements of program P working on an instance I.

 C is a constant representing the fixed space requirements

 Example :

1. int sum(int A[], int n)

{

 int sum=0, i;

 for(i=0;i<n;i++)

 {

 Sum=sum+A[i];

 return sum;

 }

}

Here Space needed for variable n = 1 byte

 Sum = 1 byte

 i = 1 byte

 Array A[i] = n byte

 Total Space complexity = [n+3] byte

2. void main()

{

 int x,y,z,sum;

 printf(“Enter 3 numbers”);

 scanf(“%d%d%d”,&x,&y,&z);

 sum = x+y+z;

 printf(“The sum = %d”,sum);

}

Here Space needed for variable x = 1 byte

 y = 1 byte

 z = 1 byte

 sum = 1 byte

 Total Space complexity = 4 byte

3. sum (a,n)

{

 int s=0;

 for(i=0;i<n;i++)

 for(j=0;j<m;j++)

 s=s+a[i][j];

 return s;

}

Here Space needed for variable n = 1 byte

 m = 1 byte

 s = 1 byte

 i = 1 byte

 j = 1 byte

 Array a[i][j] = nm byte

 Total Space complexity = nm+5 byte

2. Time Complexity

 The time complexity of an algorithm or a program is the amount of time it needs to run to

completion.

 T(P)=C +TP

Here C is compile time

 Tp is Runtime

 For calculating the time complexity, we use a method called Frequency Count ie, counting

the number of steps

 Comments – 0 step

 Assignment statement – 1 Step

 Conditional statement – 1 Step

 Loop condition for ‘n’ numbers – n+1 Step

 Body of the loop – n step

 Return statement – 1 Step

 Examples:

3. Iterative function for summing a list of numbers

Tabular Method

s/e =steps/execution

4. Recursive summing of a list of numbers

Statement s/e Frequency Total steps

float sum(float list[], int n)

{

 float tempsum = 0;

 int i;

 for(i=0; i <n; i++)

tempsum += list[i];

 return tempsum;

}

0 0 0

0 0 0

1 1 1

0 0 0

1 n+1 n+1

1 n n

1 1 1

0 0 0

Total 2n+3

Tabular Method

 When we analyze an algorithm it depends on the input data, there are three cases :

a. Best case: The best case is the minimum number of steps that can be executed for the

given parameters.

b. Average case: The average case is the average number of steps executed on instances

with the given parameters.

c. Worst case: In the worst case, is the maximum number of steps that can be executed for

the given parameters

ASYMPTOTIC NOTATION

 Complexity of an algorithm is usually a function of n.

 Behavior of this function is usually expressed in terms of one or more standard functions.

 Expressing the complexity function with reference to other known functions is called asymptotic

complexity.

 Three basic notations are used to express the asymptotic complexity

1. Big – Oh notation O : Upper bound of the algorithm

2. Big – Omega notation Ω : Lower bound of the algorithm

3. Big – Theta notation Θ : Average bound of the algorithm

1. Big – Oh notation O

 Formal method of expressing the upper bound of an algorithm’s running time.

 i.e. it is a measure of longest amount of time it could possibly take for an algorithm to

complete.

 It is used to represent the worst case complexity.

Statement s/e Frequency Total steps

float rsum(float list[], int n)

{

 if (n)

 return rsum(list, n-1)+list[n-1];

 return list[0];

}

0 0 0

0 0 0

1 n+1 n+1

1 n n

1 1 1

0 0 0

Total 2n+2

 f(n) = O(g(n)) if and only if there are two positive constants c and n0 such that

f(n) ≤ c g(n) for all n ≥ n0 .

 Then we say that “f(n) is big-O of g(n)”.

 Examples:

1. Derive the Big – Oh notation for f(n) = 2n + 3

Ans:

2n + 3 <= 2n+3n

2n+3 <= 5n for all n>=1

Here c = 5

 g(n) = n

so, f(n) = O(n)

2. Big – Omega notation Ω

 f(n) = Ω(g(n)) if and only if there are two positive constants c and n0 such that

f(n) ≥ c g(n) for all n ≥ n0.

 Then we say that “f(n) is omega of g(n)”.

 Examples:

Derive the Big – Omega notation for f(n) = 2n + 3

Ans:

2n + 3 >= 1n for all n>=1

Here c = 1

 g(n) = n

so, f(n) = Ω (n)

3. Big – Theta notation Θ

 f(n) = Θ(g(n)) if and only if there are three positive constants c1, c2 and n0 such that

c1 g(n) ≤ f(n) ≤ c2 g(n) for all n ≥ n0 .

 Then we say that “f(n) is theta of g(n)”.

 Examples:

Derive the Big – Theta notation for f(n) = 2n + 3

Ans:

1n <= 2n + 3 <= 5n for all n>=1

Here c1 = 1

 C2 = 5

 g1(n) and g2(n) = n

so, f(n) = Θ (n)

TIME COMPLEXITY OF LINEAR SEARCH

 Any algorithm is analyzed based on the unit of computation it performs. For linear search,

we need to count the number of comparisons performed, but each comparison may or may

not search the desired item.

TIME COMPLEXITY OF BINARY SEARCH

 In Binary search algorithm, the target key is examined in a sorted sequence and this

algorithm starts searching with the middle item of the sorted sequence.

a. If the middle item is the target value, then the search item is found and it returns True.

b. If the target item < middle item, then search for the target value in the first half of the

list.

c. If the target item > middle item, then search for the target value in the second half of

the list.

 In binary search as the list is ordered, so we can eliminate half of the values in the list in

each iteration.

 Consider an example, suppose we want to search 10 in a sorted array of elements, then we

first determine 15 the middle element of the array. As the middle item contains 18, which is

greater than the target value 10, so can discard the second half of the list and repeat the

process to first half of the array. This process is repeated until the desired target item is

located in the list. If the item is found then it returns True, otherwise False.

 In Binary Search, each comparison eliminates about half of the items from the list. Consider

a list with n items, then about n/2 items will be eliminated after first comparison. After

second comparison, n/4 items of the list will be eliminated. If this process is repeated for

several times, then there will be just one item left in the list. The number of comparisons

required to reach to this point is n/2i = 1. If we solve for i, then it gives us i = log2 n. The

maximum number is comparison is logarithmic in nature, hence the time complexity of

binary search is O(log n).

MODULE 2 - ARRAYS AND SEARCHING

Polynomial representation using Arrays, Sparse matrix, Stacks, Queues - Circular Queues,

Priority Queues, Double Ended Queues, Evaluation of Expressions, Linear Search and Binary

Search

DATA STRUCTURE

It is a representation of logical relationship between individual elements of data. It is also defined

as a mathematical model of particular organization of data items. It is also called building block

of a program.

Classification of data structure

1. Linear data structure

 All the elements form a sequence or maintain a linear ordering.

2. Non linear data structure

 Elements are distributed over a plane.

1. POLYNOMIAL REPRESENTATION USING ARRAYS

 A polynomial is a sum of terms where each term has the form axe ,

Where x is the variable, a is the coefficient and e is the exponent.

Polynomial representation using Arrays

Polynomial Addition Example

Steps of Polynomial Addition

2. SPARSE MATRIX

 A matrix is a two-dimensional data object made of ‘m’ rows and ‘n’ columns, therefore

having total m x n values. If most of the elements of the matrix have 0 values, then it is

called a sparse matrix.

 Sparse matrix is a matrix which contains very few non-zero elements.

 When a sparse matrix is represented with a 2-dimensional array, we waste a lot of space to

represent that matrix.

 Consider a matrix of size 100 X 100 containing only 10 non-zero elements. In this matrix,

only 10 spaces are filled with non-zero values and remaining spaces of the matrix are

filled with zero. Totally we allocate 100 X 100 X 2 = 20000 bytes of space to store this

integer matrix. To access these 10 non-zero elements we have to make scanning for 10000

times.

 Sparse Matrix Representations can be done in many ways following are two common

representations:

1. Array representation

 Three tuple form

2. Linked list representation

 2D array is used to represent a sparse matrix in which there are three columns named as

 Row:Index of row, where non-zero element is located

 Column:Index of column, where non-zero element is located

 Value:Value of the non zero element located at index –(row,column)

Triplets

(0,2,3)

(0,4,4)

(1,2,5)

(1,3,7)

(3,1,2)

(3,2,6)

Why to use Sparse Matrix instead of simple matrix ?

 Storage: There are lesser non-zero elements than zeros and thus lesser memory can be

used to store only those elements.

 Computing time: Computing time can be saved by logically designing a data structure

traversing only non-zero elements.

3. STACK

 It is a linear data structure in which elements are placed one above another.

 A stack is an ordered collection of homogeneous data elements where the insertion and

deletion operations take place only at one end called Top of the stack.

 LIFO - In stack elements are arranged in Last-In-First-Out manner (LIFO). So it is

also called LIFO lists.

 Anything added to the stack goes on the “top” of the stack.

 Anything removed from the stack is taken from the “top” of the stack.

 Things are removed in the reverse order from that in which they were inserted

Operations of Stack

 Two basic operations of stack:

 PUSH : Insert an element at the top of stack

 POP: Delete an element from the top of stack

 An element in the stack is termed as ITEM.

 Initially top is set to -1, to indicate an empty stack. (Top = -1)

 The maximum no. of elements that a stack can accommodate is termed MAX_SIZE.

 If stack is full Top = MAX_SIZE - 1

Array representation of stack

 Stack can be represented using a linear array.

 There is a pointer called TOP to indicate the top of the stack

 top

 Overflow: If we try to insert a new element in the stack top (push) which is already full,

then the situation is called stack overflow.

 Underflow: If we try to delete an element (pop) from an empty stack, the situation is

called stack underflow.

Basic Operations

 push() − Pushing (storing) an element on the stack.

 pop() − Removing (accessing) an element from the stack.

 peek() − get the top data element of the stack, without removing it.

int peek() {

 return stack[top];

 }

 isFull() − check if stack is full.

bool isfull() {

 if (top == MAX_SIZE)

return true;

 else

 return false;

 }

 isEmpty() − check if stack is empty.

bool isempty() {

 if(top == -1)

 return true;

 else

 return false;

 }

Algorithm: PUSH()

 Let A be an array with Maximum size as MAX_SIZE. Initially, top= -1

1. Start

2. if top < MAX_SIZE – 1

3. set top=top+1

4. Set A[top]=item

5. else

6. print “OVERFLOW”

7. exit

POP Operation

Algorithm: POP()

Applications of stack

 Reversing an array

 A B C D

 Pushing to stack A B C D

 Popping from stack D C B A

 Undo operations

1. Start

2. if top= -1 then

3. print “UNDERFLOW”

4. else

5. set item=A[top]

6. Set top=top-1

7. exit

 Infix to prefix, infix to postfix conversion

 Tree Traversal

 Evaluation of postfix expressions

4. QUEUES

 A queue is an ordered collection of homogeneous data elements. In which insertion is

done at one end called REAR and deletion is done at another end called FRONT.

 FIFO - In queue elements are arranged in First-In-First-Out manner (FIFO).

 First inserted element is removed first

 Two basic operations of queue:

1. Enqueue -> Insert an element at the rear end of queue.

2. Dequeue-> Delete an element from the front end of queue.

 Initial case rear = -1 and front = 0, MAX SIZE is the size of the queue.

 If rear = front then queue contains only a single element

 If rear < front then queue is empty

 Queue full : rear = n-1 and front =0

 Whenever an element is deleted from the queue, the value of FRONT is increased by 1.

 i.e. FRONT=FRONT+1

 Similarly, whenever an element is added to the queue, the REAR is incremented by 1 as,

 REAR=REAR+1

Array Representation of Queue

Basic Operations

 enqueue() − add (store) an item to the queue.

 dequeue() − remove (access) an item from the queue.

 peek() − Gets the element at the front of the queue without removing it.

int peek()

{

 return queue[front];

}

 isfull() − Checks if the queue is full

bool isfull()

{

 If (rear == MAXSIZE - 1)

 return true;

 else

 return false;

}

 isempty() − Checks if the queue is empty.

 bool isempty()

 {

if(front < 0 || front > rear)

return true;

else

return false;

}

Algorithm : Enqueue

1. Start

2. if rear = MAX_SIZE – 1 then

3. print “OVERFLOW”

4. else

5. set rear = rear + 1

6. Set A[rear]=item

7. exit

Algorithm : Dequeue

Type of Queues

 Circular Queue

 Priority Queue

 Doubly ended Queue

1. Start

2. if rear < front then

3. print “UNDER FLOW”

4. else

5. set item = A[front}

6. set front = front + 1

7. exit

5. CIRCULAR QUEUE

 To utilize space properly, circular queue is derived.

 In this queue the elements are inserted in circular manner.

 So that no space is wasted at all.

 Circular queue empty:

FRONT= -1

REAR= -1

 Circular queue full:

(rear + 1) % max_size = Front

 It is a modification of simple queue in which the rear pointer is set to the initial location,

whenever it reaches the location max_size – 1.

Insertion Algorithm (ENQUEUE)

1. if (front == -1 & rear == -1)

2. set front =0 and rear = 0

3. Set a[rear]=item

4. else if (front = (rear+1) % max_size) then

5. Print over flow

6. else

7. set rear = (rear + 1)% max_size

8. Set a[rear] = item

9. Exit

Deletion Algorithm (DEQUEUE)

7. PRIORITY QUEUE

 Regular queue follows a First In First Out (FIFO) order to insert and remove an item.

Whatever goes in first, comes out first.

 In a priority queue, an item with the highest priority comes out first.

 Therefore, the FIFO pattern is no longer valid.

 Every item in the priority queue is associated with a priority.

 It does not matter in which order we insert the items in the queue

 The item with higher priority must be removed before the item with the lower priority.

 If two elements have the same priority, they are served according to their order in the

queue.

Operations on a priority queue

1. EnQueue: EnQueue operation inserts an item into the queue. The item can be inserted

at the end of the queue or at the front of the queue or at the middle. The item must

have a priority.

2. DeQueue: DeQueue operation removes the item with the highest priority from the

queue.

3. Peek: Peek operation reads the item with the highest priority.

1. if front = -1 and rear = -1 then

2. print underflow and exit

3. else if front = rear

4. set item= a[front]

5. set front = -1 and rear = -1

6. else

7. set item= a[front]

8. set front = (front + 1) % max_size

9. Exit

10. Exit

1. Enqueue Operation

1. IF((Front == 0)&&(Rear == N-1))

2. PRINT “Overflow Condition”

3. Else IF(Front == -1& rear == -1)

4. Front = Rear =0

5. Queue[Rear] = Data

6. Priority[Rear] = Priority

7. ELSE IF(Rear ==N-1)

8. FOR (i=Front;i<=Rear;i++)

9. FOR(i=Front;i<=Rear;i++)

10. Q[i-Front] =Q[i]

11. Pr[i-Front] = Pr[i]

12. Rear = Rear-Front

13. Front = 0

14. FOR(i = r;i>f;i–)

15. IF(p>Pr[i])

16. Q[i+1] = Q[i] Pr[i+1] = Pr[i]

17. ELSE

18. Q[i+1] = data Pr[i+1] = p

19. Rear++.

2. Dequeue operation

1. IF(Front == -1)

2. PRINT “Queue Under flow condition”

3. ELSE

4. PRINT”Q[f],Pr[f]”

5. IF(Front==Rear)

6. Front = Rear = -1

7. ELSE

8. FRONT++

Applications of Priority Queue

1. CPU Scheduling

2. Graph algorithms like Dijkstra’s shortest path algorithm, Prim’s Minimum Spanning

Tree, etc

3. All queue applications where priority is involved.

4. For load balancing and interrupt handling in an operating system

8. DOUBLY ENDED QUEUE

It is a list of elements in which insertion and deletion are perform at both ends

 It has 4 operations

1. Insertion at rear end

2. Insertion at front end

3. Deletion at rear end

4. Deletion at front end

1. Algorithm : Insertion at rear end

1. Start

2. if rear = MAX_SIZE – 1 then

3. print “OVERFLOW”

4. Else

5. set rear = rear + 1

6. Set A[rear]=item

7. exit

2. Insertion at front end

3. Deletion at front end

4. Deletion at rear end

1. Start

2. if front = 0 then

3. print “OVERFLOW” and exit

4. Else

5. set front = front - 1

6. Set A[front]=item

7. exit

1. Start

2. if front = 0 and rear = -1 then

3. print “UNDER FLOW” and exit

4. set item = A[front]

5. if front = rear then

6. set front = 0 and rear = -1

7. Else set front = front + 1

8. exit

1. Start

2. if front = 0 and rear = -1 then

3. print “UNDER FLOW” and exit

4. set item = A[rear]

5. if front = rear then

6. set front = 0 and rear = -1

7. Else set rear = rear - 1

8. exit

9. CONVERSION & EVALUATION OF EXPRESSIONS

 Infix Expression: The operator occurs between the operands

<operand> <operator> <operand>

Eg: a+b

 Prefix Expression (Polish notation): The operators occurs before the operand

<operator> <operand> <operand>

Eg : +ab

 Postfix Expression (Reverse Polish notation): The operators occurs after the operand

<operand> <operand> <operator>

Eg : ab+

A. Postfix Expression Evaluation

Given P is the postfix expression, the following algorithm uses a stack to hold operands.

It finds the value of the arithmetic expression P, Written in postfix notation.

Algorithm:

Step 1: Add “) “ at the end of P

Step 2: Scan P from left – right & repeat the steps 3 & 4

Step 3: If an operand occurs, PUSH it to stack.

Step 4: If an operator occurs, then

 A: Remove the top elements of the stack.

 When A is the top element and B is the next top element

B: Evaluate B A

C: Place the result of step B back to stack

Step 5: Set the value equals to TOP element of the stack.

1. Evaluate the expression 5 * (6 + 2) – 12 / 4

Ans : Convert to postfix notation

 5 * 6 2 + - 12 / 4

 5 6 2 + * - 12 4 /

 = 5 6 2 + * 12 4 / -

 Add “) “ at the end of P

 P = 5 6 2 + * 12 4 / -)

2. Evaluate the expression (6 + 2) / (4 – 2 * 1)

Ans: Convert to postfix notation

 6 2 + / (4 – 2 1 *)

 6 2 + / 4 2 1 * -

 6 2 + 4 2 1 * - /

P = 6 2 + 4 2 1 * - /)

Scanned Symbol Stack

5 5

6 5, 6

2 5, 6, 2

+ 5, 8

* 40

12 40, 12

4 40, 12, 4

/ 40, 3

- 37

Scanned Symbol Stack

6 6

2 6 2

+ 8

B. Infix to Postfix conversion

Here the operators used are ^ , * , / , + , -. The following algorithm converts an Infix

expression Q to postfix expression P. This algorithm also uses a stack which holds the

left parenthesis and operators. We begin by pushing a Left parenthesis to stack and

adding a right parenthesis at the end of Q.

Algorithm

Step 1: PUSH left parenthesis “(“ into stack and add right parenthesis “) ” at the end of

Q.

Step 2: Scan the expression Q from Left – Right and repeat the step 3 to 6 for each

element of Q until this stack is empty.

Step 3: If an operand occurs add it to P.

Step 4: If a Left parenthesis occurs then PUSH it to stack

Step 5: If an operator occurs then

 A: Repeatedly POP the stack and add to P, each operator which has same or

higher precedence than

 B: add to stack

Step 6: If a Right parenthesis occurs then

 A: Repeatedly POP from stack and add to P each operator until a left parenthesis

occurs.

 B: Remove the left parenthesis

Step 7: Exit

4 8 4

2 8 4 2

1 8 4 2 1

* 8 4 2

- 8 2

/ 4

1. Q = A + (B * C - (D / E ^ F) * G) * H

Ans : Add right parenthesis at the end of the expression

Q = A + (B * C - (D / E ^ F) * G) * H)

Symbol Scanned Stack p

 (

A (A

+ (+ A

((+ (A

B (+ (AB

* (+ (* AB

C (+ (* ABC

- (+ (- ABC*

((+ (- (ABC*

D (+ (- (ABC*D

/ (+ (- (/ ABC*D

E (+ (- (/ ABC*DE

^ (+ (- (/ ^ ABC*DE

F (+ (- (/ ^ ABC*DEF

) (+ (- ABC*DEF ^ /

* (+ (- * ABC*DEF ^ /

G (+ (- * ABC*DEF ^ /G

) (+ ABC*DEF ^ /G * -

* (+ * ABC*DEF ^ /G * -

H (+ * ABC*DEF ^ /G * - H

) ABC*DEF ^ /G * - H * +

2. Q = ((A + B) * C – (D – E)) ^ (F + G)

Ans:

Q = ((A + B) * C – (D – E)) ^ (F + G))

Symbol Scanned Stack p

0 (

(((

((((

A (((A

+ (((+ A

B (((+ AB

) ((AB+

* ((* AB+

C ((* AB+C

- ((- AB+C*

(((- (AB+C*

D ((- (AB+C*D

- ((- (- AB+C*D

E ((- (- AB+C*DE

) ((- AB+C*DE-

) (AB+C*DE--

^ (^ AB+C*DE--

((^ (AB+C*DE--

F (^ (AB+C*DE--F

+ (^ (+ AB+C*DE--F

G (^ (+ AB+C*DE--FG

) (^ AB+C*DE--FG+

) AB+C*DE—FG+^

3. Q = (A + B) * C / D + E ^ F / G

Ans :

Q = (A + B) * C / D + E ^ F / G)

Symbol Scanned Stack p

 (

(((

A ((A

+ ((+ A

B ((+ AB

) (AB+

* (* AB+

C (* AB+C

/ (/ AB+C*

D (/ AB+C*D

+ (+ AB+C*D/

E (+ AB+C*D/E

^ (+ ^ AB+C*D/E

F (+ ^ AB+C*D/EF

/ (+ / AB+C*D/EF^

G (+ / AB+C*D/EF^G

) AB+C*D/EF^G/+

10. LINEAR SEARCH AND BINARY SEARCH

1. Linear search: Small & unsorted arrays

2. Binary search : Large arrays & sorted arrays

1. Linear Search

 It means looking at each element of the array, in turn, until you find the target value.

Algorithm

 In the best case, the target value is in the first element of the array. So the search

takes some tiny, and constant, amount of time. Computer scientists denote this O(1)

In real life, we don’t care about the best case, because it so rarely actually happens.

 In the worst case, the target value is in the last element of the array. So the search

takes an amount of time proportional to the length of the array. Computer scientists

denote this O(n)

 In the average case, the target value is somewhere in the array. So on average, the

target value will be in the middle of the array. So the search takes an amount of time

proportional to half the length of the array – also proportional to the length of the

array – O(n) again

2. Binary Search

1. Start

2. Read the ITEM to be searched

3. Set flag=0

4. Repeat for i=0 to N

5. if A[i]= =ITEM

6. print “item found”

7. flag=1

8. If flag= =0

9. print “item not found”

 The general term for a smart search through sorted data is a binary search.

1. The initial search region is the whole array.

2. Look at the data value in the middle of the search region.

3. If you’ve found your target, stop.

4. If your target is less than the middle data value, the new search region is the lower

half of the data.

5. If your target is greater than the middle data value, the new search region is the

higher half of the data.

6. Continue from Step 2.

Algorithm

Let A be a sorted array with N elements

1. Start

2. Read the ITEM to be searched

3. Set beg=0, end=n-1, mid=(beg+end)/2

4. Repeat steps 5 to 9 while(beg<=end and A[mid]≠ ITEM)

5. if ITEM< A[mid] then

6. set end=mid-1

7. else

8. beg=mid+1

9. mid=(beg+end)/2

10. If A[mid]=ITEM then

11. print “item found”

12. Else print “element not found”

 Binary search reduces the work by half at each comparison

MODULE 3 - LINKED LIST AND MEMORY MANAGEMENT

Self Referential Structures, Dynamic Memory Allocation, Singly Linked List-Operations on

Linked List, Doubly Linked List, Circular Linked List, Stacks and Queues using Linked List,

Polynomial representation using Linked List, Memory allocation and de-allocation-First-fit,

Best-fit and Worst-fit allocation schemes

Disadvantage of using array

 Memory resizing is not possible. i.e. array size is fixed- it is a static data structure.

 Array requires continuous memory locations to store data.

 Wastage of memory

1. LINKED LIST

 A linked list is an ordered collection of finite, homogeneous data elements called nodes

where the linear order is maintained by means of links or pointers.

 A linked list is a dynamic data structure where the amount of memory required can be

varied during its use.

 In the linked list, the adjacency between the elements is maintained by means of links or

pointers.

 A link or pointer actually is the address (memory location) of the subsequent element.

 An element in a linked list is a specially termed node, which can be viewed as shown in the

figure.

 A node consists of two fields : DATA (to store the actual information) and LINK (to point

to the next node)

 links to the next node

 A linked list is called "linked" because each node in the series has a pointer that points to the

next node in the list.

 Head: pointer to the first node

 The last node points to NULL

 Depending on the requirements the pointers are maintained, and accordingly the linked list

can be classified into three major groups:

1. Single linked list

2. Circular linked list

3. Double linked list.

SINGLE LINKED LIST

 In any single linked list, every "Node" contains two fields, data and link.

 The data field is used to store actual value of that node and link field is used to store the

address of the next node in the sequence.

 Each node contains only one link which points to the subsequent node in the list.

 The header node points to the 1st node in the list

 The link field of the last node contain NULL(ᶲ) value.

 Here one can move from left to right only. So it is also called one-way list

Representation of a linked list in memory

 Two ways:

1. Static representation using array

2. Dynamic representation using free pool storage

1. Static representation

Two arrays are maintained:

– One for data and other for links.

2. Dynamic representation

 The efficient way of representing a linked list is using the free pool of storage.

 There is a

– memory bank : Collection of free memory spaces &

– memory manager: a program

 Whenever a node is required, the request is placed to the memory manager.

 It will search the memory bank for the block. If found, it will be granted.

 Garbage collector: Another program that returns the unused node to the memory bank.

 Returning a node to memory bank

Operations on a Single Linked List

 Traversing the list

 Inserting a node into the list

 Deleting a node from the list

 Merging the list with another to make a larger list

 Node creation

struct node

{

 int data;

 struct node *link;

};

 Function used for memory allocation is “malloc”

New_node = (struct node*)malloc (sizeof (struct node))

1. Traversing a single linked list

 Here we visit every node in the list starting from the first node to the last one.

Traverse()

1. Set ptr=head; //initialize the pointer ptr

2. While (ptr!=null) do

3. print ptr->data

4. ptr= ptr->link; //ptr now points to the next node

2. Inserting a node into the list

A. Inserting at the front (as a first element)

B. Inserting at the end(as a last element)

C. Inserting at any other position

A. Inserting at the front

Algorithm: Insert a new node temp with data ‘item’

1. Create a pointer temp of type struct node

2. Create a new node temp using malloc function

temp = (struct node*) malloc(sizeof(struct node));

3. if (temp==NULL)

4. print “memory underflow, no insertion”

5. else

6. temp->data= item

7. Set temp-> link=head

8. head=temp

B. Inserting at the end

 Here first we need to traverse the list to get the last node.

1. Create a pointer temp & ptr of type struct node

2. Create a new node temp using malloc function

 temp = (struct node*) malloc(sizeof(struct node));

3. Set ptr=head; //initialize the pointer ptr

4. While (ptr->link!=null) do

5. ptr= ptr->link; //ptr now points to the next node

6. ptr->link= temp

7. temp->data=item

C. Insertion- At any position in the list

1. Create a pointer temp & ptr of type struct node

2. Create a new node temp using malloc function

 temp = (struct node*) malloc(sizeof(struct node));

3. Read the value key of node after which a new node is to be placed

4. Set ptr=head

5. Repeat while (ptr-> data!=key) and (ptr->link!=NULL)

6. ptr=ptr-> link

7. If (ptr->link==NULL)

8. print “search fails”;

9. else

10. temp->link= ptr-> link

11. ptr->link= temp

3. Deleting a node from the list

 In a linked list, an element can be deleted:

A. From the 1st location

B. From the last location

C. From any position in the list

free(ptr) : It will free the location pointed by ptr

A. Deletion- From the beginning

1. Create a pointer ptr of type struct node

2. If (head==NULL) then exit

3. Else set ptr = head

4. set head=ptr-> link

5. free(ptr)

B. Deletion- From the end

1. Create a pointer ptr & temp of type struct node.

2. If (head -> link ==NULL) do step 3,4,5 else goto 6

3. ptr=head

4. head=NULL

5. free(ptr)

6. ptr=head

7. temp = head -> link

8. while(tem -> link !=NULL) do 9,10 else goto 11

9. ptr=temp

10. temp= tem -> link

11. ptr-> link =NULL

12. free (temp)

C. Deletion- From any position

1. Read the value key that is to be deleted

2. Create pointer ptr & temp of type struct node

3. Set ptr=head

4. if head=NULL then print underflow and exit

5. temp=ptr

6. while(ptr!=null) do step 7,8,9

7. If(ptr->data=key) then

 a) temp->link=ptr->link

 b) free(ptr) & exit

 8. temp=ptr

 9. Ptr = ptr->link

4. Merging

 Two linked list L1 and L2.

 Merge L2 after L1

1. Set ptr= head1

2. While(ptr->link!= NULL) do step 3 else goto step 4

3. ptr=ptr->link

4. ptr->link=head2

5. Return(head2)

6. Head=head1

7. Stop

2. DOUBLY LINKED LIST

 Single linked list= one-way list

 List can be traversed in one direction only

 Double linked list= Two-way list

 List can be traversed in two directions

 two- way list is a linear collection of data elements called nodes where each node N is

divided in to three parts

– Data field contains the data of N

– LLINK field contains the pointer to the preceding Node in the list

– RLINK field contains the pointer to the next node in the list

iii) Insertion- after an element key

i) Deletion- from 1st location

ii) Deletion- from last location

iii) Deletion- from intermediate location

3. CIRCULAR LINKED LIST

 In a single linked list, the link field of the last node is null.

 If we utilize this link field to store the pointer of the header node, a number of advantages

can be gained.

 A linked list, whose last node points back to the first node, instead of containing the null

pointer is called a circular list

 Advantages:

1. Accessibility of a member node – here every member node is accessible from any

node by merely chaining through the list

eg: Finding of earlier occurrence or post occurrence of a data will be easy

2. Null link problem- Null value in next field may create problem during the

execution of the program if proper care is not taken

3. Some easy-to-implement operations - Operations like merging, splitting, deletion,

dispose of an entire list etc can be done easily with circular list

 Disadvantages:

 If not cared, system may get trap into in infinite loop

 It occurs when we are unable to detect the end of the list while moving from one

node to the next

 Solution: Special node can be maintained with data part as NULL and this node

does not contain any valid information. So its just a wastage of memory space

Insertion in circular linklist

 We want to insert data ‘X’ after a given position, ‘pos’

 Here we are using a pointer called last, which points to the last node

1. Create a pointer temp and q of type struct node

2. Set q=last->link and i=1

3. While(i<pos) do step 4

4. q=q->link & increment I

5. Create a new node temp usin malloc function

 temp = (struct node*) malloc(sizeof(struct node));

6. temp->link=q->link

7. temp->data = X

8. q->link = temp

Deletion in circular Linked List

1. if last = NULL print under flow and exit

// Linkedlist containing only one node

2. If last -> link = last & last -> data = key then do the steps 3,4,5

3. temp= last

4. Last = NULL

5. free(temp)

6. q = last ->link

//Deleting first node

7. if q->data =key do 8,9,10

8. temp = q

9. Last->link= q->link

10. free(temp)

// deleting Middle node

11. Repeat steps 12 to 16 while q->link!=last

12. if q->link->data =key do step 13,14,15

13. temp = q->link

14. q->link= tem->link

15. Free(temp)

//Deleting last node

16. If q->link ->data = key

17. temp = q->link

18. q->link=last->link

19. Free(temp)

20. Last=q

4. STACKS USING LINKED LIST

 Stack can also be represented using a singly linked list.

 Linked lists have many advantages compared to arrays.

 In linked list, the DATA field contains the elements of stack and LINK field points to the

next element in the stack.

 Here Push operation is accomplished by inserting a new node in the front or start of the

list.

 Pop is done by removing the element from the front of the list

Insertion- At the beginning

Algorithm: PUSH()

 1. Create a new node temp //struct node *temp = (struct node*) malloc(sizeof(struct node));

 2. If (temp==NULL)

 3. print “memory underflow, no insertion”

 4. else

 5. temp->data= item

 6. temp-> link=head

 7. head=temp

Deletion- From the beginning

Algorithm: POP()

1. Start

2. If(head==null)

3. print “underflow”

4. Else

5. print the deleted element ‘head-> data’

6. head= head->link

5. QUEUES USING LINKED LIST

 Queue can also be represented using a singly linked list.

 Linked lists have many advantages compared to arrays.

 In linked list, the Data field contains the elements of queue and Next pointer points to the

next element in the queue.

 Here enqueue operation is accomplished by inserting a new node in the tail or end of

the list.

 Dequeue is done by removing the element from the beginning of the list

Insertion- At the end

Algorithm: Enqueue()

 1. Set ptr=head; //initialize the pointer ptr

2. While (ptr->link!=null) do

3. ptr= ptr->link; //ptr now points to the next node

4. ptr->link= temp

5. temp->data=item

Deletion – At the front

Algorithm: DEQUEUE()

1. Start

2. If(head==null)

3. print “underflow”

4. Else

5. print the deleted element ‘head-> data’

6. head= head-> link

6. POLYNOMIAL REPRESENTATION USING LINKED LIST

1

MODULE 3 – PART 2

 Memory Management

The basic task of any program is to manipulate data. These data should be stored in memory

during their manipulation. There are two memory management schemes for the storage

allocations of data:

1. Static storage management
2. Dynamic storage

management

 Static Storage Management

 Dynamic Storage Management

There are various principles on which the dynamic memory management scheme is based.

These principles are listed below.

2

Memory Representation

A memory bank or a pool of free storages is often a collection of non-contiguous blocks of

memory. Their linearity can be maintained by means of pointers between one block to

another, or in other words a memory bank is a linked list where links maintain the adjacency

of blocks. Regarding the size of the blocks, there are two practices: fixed block storage and

variable block storage.

 Fixed Block Storage

This is the simplest storage maintenance method. Here each block is of the same size. The

size is determined by the system manager (user). Here, the memory manager (a program of

OS) maintains a pointer AVAIL which points a list of non-contiguous memory blocks. The

below figure shows a memory bank with fixed size blocks.

3

4

5

6

 Variable Block Storage

7

8

9

1
0

1
1

 Storage Allocation Strategies

In order to service a request for a memory block of given size, any one of the following well-

known strategies can be used.

(a) First-Fit allocation

(b) Best-Fit allocation

(c) Worst-Fit Allocation

(d) Next-Fit Allocation

Let us discuss all these allocation strategies assuming that the memory system has to serve

a request for a block of size N.

1
2

1
3

Module IV - Trees and Graphs

Trees, Binary Trees-Tree Operations, Binary Tree Representation, Tree Traversals, Binary

Search Trees- Binary Search Tree Operations

Graphs, Representation of Graphs, Depth First Search and Breadth First Search on Graphs,

Applications of Graphs

TREES

 Arrays, linked lists, stacks and queues were examples of linear data structures in which

elements are arranged in a linear fashion (ie, one dimensional representation).

 Tree is another very useful data structure in which elements are appearing in a non-linear

fashion, which requires a two dimensional representation.

Example Figure:

2

Basic Terminologies

3

4

DEFINITION AND CONCEPTS

 Any node N in a binary tree has either 0,1 or 2 successors.

 A tree can never be empty, but binary tree may be empty.

 A tree can have any no. of children, but in a binary tree, a node can have at most two

children.

Properties of a binary tree

REPRESENTATION OF BINARY TREE

Implicit & Explicit representation

 Implicit representation

– Sequential / Linear representation, using arrays.

 Explicit representation

– Linked list representation, using pointers.

Sequential representation

 This representation is static.

 Block of memory for an array is allocated, before storing the actual tree.

 Once the memory is allocated, the size of the tree will be fixed.

 Nodes are stored level by level, starting from the zeroth level.

 Root node is stored in the starting memory location, as the first element of the array.

 Consider a linear array TREE

Rules for storing elements in TREE are:

1. The root R of T is stored in location 1.

2. For any node with index I 1<i<=n:

PARENT(i)= i/2

For the node when i=1,there is no parent.

 LCHILD(i)=2*I

If 2* i >n, then i has no left child

RCHILD(i)=2*i+1

 If 2*i+1>n, then I has no right child.

Sequential representation- Advantages:

1. Any node can be accessed from any other node by calculating the index.

2. Here, data are stored simply without any pointers to their successor or predecessor.

3. Programming languages, where dynamic memory allocation is not possible(like BASIC,

FROTRAN), array representation is only possible.

Sequential representation- Disadvantages:

1. Other than full binary trees, majority of the array entries may be empty.

2. It allows only static representation. It is not possible to enhance the tree structure, if

the array structure is limited.

3. Inserting a new node and deletion of an existing node is difficult, because it require

considerable data movement

Linked list representation

 It consist of three parallel arrays DATA, LC and RC

 LC RC

 Each node N of T will correspond to a location K such that:

– DATA[K] contains the data at the node N

– LC[K] contains the location of the left child of node N

– RC[K] contains the location of the right child of node N

14

Skew binary tree

 Consider a binary tree with n nodes.

 If the maximum height possible hmax=n, then it is called skew binary tree.

15

BINARY TREE TRAVERSALS

 Traversal is a process to visit all the nodes of a tree and may print their values too.

 Because, all nodes are connected via edges (links) we always start from the root node.

 That is, we cannot random access a node in tree.

 There are three ways which we use to traverse a tree –

1. Preorder traversal (R, Tl,Tr)

2. Inorder traversal (Tl, R, Tr)

3. Postorder traversal (Tl,Tr ,R)

16

17

18

19

20

21

22

23

1. Start

2. Create a node temp and insert ITEM in it.

3. If(ROOT==null)

4. Set ROOT=temp

5. Else

24

6. Set ptr= ROOT

7. while(ptrǂ null)

8. Set parent= ptr

9. if(ITEM< ptr->data)

10. ptr=ptr->LCHILD

11. if(ptr==null)

12. parent->LCHILD=temp

13. else

14. ptr= ptr->RCHILD

15. if (ptr==null)

16. parent->RCHILD= temp

Deletion in a BST

 There are the following possible cases when we delete a node:

25

1. The node to be deleted has no children. In this case, all we need to do is delete the

node.

2. The node to be deleted has only one child (left or right subtree). We delete the node

and attach the subtree to the deleted node’s parent.

3. The node to be deleted has two children. It is possible to delete a node from the

middle of a tree, but the result tends to create very unbalanced trees.

Deletion from the middle of a tree

• We can find the largest node in the deleted node’s left subtree and move its data to

replace the deleted node’s data.

• We can find the smallest node on the deleted node’s right subtree and move its data to

replace the deleted node’s data.

• Either of these moves preserves the integrity of the binary search tree.

Deletion in a BST: Example

Case 1: The node to be deleted has no children.

26

Case 2: The node to be deleted has exactly one child.

Case 3: The node to be deleted has two children.

Two methods:

1) We can find the largest node in the deleted node’s left subtree and move its data to

replace the deleted node’s data.

27

2) We can find the smallest node on the deleted node’s right subtree and move its data to

replace the deleted node’s data.

Deletion Algorithm

Delete(item, ptr)

1. if ptr != null then do step 2 – 7

2. if item < ptr -> data then

 Delete(item,ptr->lchild)

28

3. else if item > ptr -> data

 Delete(item, ptr -> rchild)

4. else if (ptr -> lchild = null) and (ptr -> rchild = null)

 ptr = null // Deleting leaf node

5. else if (ptr -> lchild = null) then ptr = ptr -> rchild // Single child

6. else if (ptr -> rchild = null) then ptr = ptr -> lchild // Single child

7. else set ptr -> data = deletemin(ptr -> rchild) // Deleting if more children are present

Function deletemin(ptr)

1. if ptr -> lchild = null then return ptr ->item

2. else return deletemin(ptr -> lchild)

GRAPHS

 Graph is an important non-linear data structure.

29

 Tree is in fact, a special kind of graph structure.

 In tree structure, there is a hierarchical relationship between parent and children, that

is, one parent and many children.

 On the other hand, in graph, relationship is less restricted. Here, relationship is from

many parents to many children.

 The below figure represents the two non-linear data structures.

Figure:

Formal definition of graph

• A graph can be represented as G=(V,E)

•

30

Graph Terminologies

31

32

The following graphs G2,G6 and G9 are examples of simple graph since it does not contain

any self-loop or parallel edges.

Figure: Examples of simple graphs

The below graphs G5 and G10 are not simple graphs. Here, the graph G5 contains both self

loop and parallel edges, where as graph G10 contains parallel edges.

33

 Figure: Examples of graphs which are not simple

Both G1 and G2 contain cycle.

34

G4 and G7 are two acyclic graphs.

35

36

Examples for connected graphs

G8 – Not connected

37

Representation of Graphs

A graph can be represented in many ways. Some of the representations are:

1. Set representation

2. Linked representation

3. Sequential (matrix) representation

Consider the following graphs to be illustrated using the above representations.

38

1. Set Representation

39

The linked list representation of graph G1 is as shown below.

40

The linked list representation of graph G2 is as shown below.

The linked representation of graph G3 is as shown below.

41

42

43

GRAPH TRAVERSAL

 There are 2 types of traversals

1. Breadth First search

2. Depth First Search

BREADTH-FIRST SEARCH

44

Here the data structure used is QUEUE

Algorithm

1. Initialize all the nodes as unvisited

2. Insert the first node/ starting node Vi to queue

3. Repeat 4 and 5 until queue is empty

4. Delete the node from Queue and mark it as visited

5. Insert the unvisited adjacent nodes of Vi to queue

6. Repeat until all the nodes are visited

7. Stop

Starting from node ‘a’

Insert node ‘a’ into queue

45

Queue

a

Delete node ‘a’ from queue and mark it as visited

Result: a

• Then visits nodes adjacent to ‘a’ in some specified order (e.g., alphabetical) and insert

into queue

b c d e

Delete next first element from queue ie, ‘b’ and mark it as visited

Result: ab

• Then visits nodes adjacent to ‘b’ in some specified order (e.g., alphabetical) and insert

into queue

c d e f g

Delete next first element from queue ie, ‘c’ and mark it as visited

Result: abc

• Then visits nodes adjacent to ‘c’ in some specified order (e.g., alphabetical) and insert

into queue. There is nodes are adjacent to ‘c’

d e f g

Delete next first element from queue ie, ‘d’ and mark it as visited

Result: abcd

• Then visits nodes adjacent to ‘d’ in some specified order (e.g., alphabetical) and insert

into queue.

46

e f g h i j

Delete next first element from queue ie, ‘e’ and mark it as visited

Result: abcde

• Then visits nodes adjacent to ‘e’ in some specified order (e.g., alphabetical) and insert

into queue. There is nodes are adjacent to ‘e’

f g h i j

Delete next first element from queue ie, ‘f’ and mark it as visited

Result: abcdef

• Then visits nodes adjacent to ‘f’ in some specified order (e.g., alphabetical) and insert

into queue. There is nodes are adjacent to ‘f’

g h i j

Delete next first element from queue ie, ‘g’ and mark it as visited

Result: abcdefg

• Then visits nodes adjacent to ‘g’ in some specified order (e.g., alphabetical) and insert

into queue.

h i j k

Delete next first element from queue ie, ‘h’ and mark it as visited

Result: abcdefgh

• Then visits nodes adjacent to ‘h’ in some specified order (e.g., alphabetical) and insert

into queue. There is nodes are adjacent to ‘h’

47

i j k

Delete next first element from queue ie, ‘i’ and mark it as visited

Result: abcdefghi

• Then visits nodes adjacent to ‘i’ in some specified order (e.g., alphabetical) and insert

into queue.

j k l

Delete next first element from queue ie, ‘j’ and mark it as visited

Result: abcdefghij

• Then visits nodes adjacent to ‘j’ in some specified order (e.g., alphabetical) and insert

into queue. There is nodes are adjacent to ‘j’

k l

Delete next first element from queue ie, ‘k’ and mark it as visited

Result: abcdefghijk

• Then visits nodes adjacent to ‘k’ in some specified order (e.g., alphabetical) and insert

into queue. There is nodes are adjacent to ‘k’

l

Delete next first element from queue ie, ‘l’ and mark it as visited

Result: abcdefghijkl

• Then visits nodes adjacent to ‘l’ in some specified order (e.g., alphabetical) and insert

into queue. There is nodes are adjacent to ‘l’

48

DEPTH-FIRST SEARCH

Here the data structure used is STACK

Algorithm

1. Initialize all the nodes as visited

2. PUSH the first node/ starting node Vi to stack

3. Repeat 4 and 5 until stack is empty

4. POP the top node of stack Vi and mark it as visited

5. PUSH the unvisited adjacent nodes of Vi to stack

6. Repeat until all the nodes are visited

7. Stop

49

B

50

51

There is no unvisited adjacent vertex for D. So backtrack, POP the stack top and backtrack to

top element. Then do the same steps until stack is empty

52

53

54

55

56

Department of Computer Science & Engineering

MODULE 5

SEQUENTIAL SEARCH

Sequential_search(key)

Input: An unsorted array a[], n is the no.of elements, key indicates the

element to be searched

Output: Target element found status

DS: Array

1. Start

2. i=0

3. flag=0

4. While i<n and flag=0

1. If a[i]=key

1. Flag=1

2. Index=i

2.end if

3. i=i+1

5. end while

6. if flag=1

1. print “the key is found at location index”

7. else

7. end if

8. stop

1. print “key is not found”

Analysis

In this algorithm the key is searched from first to last position in linear manner. In the

case of a successful search, it search elements up to the position in the array where it

finds the key. Suppose it finds the key at first position, the algorithm behaves like best

case, If the key is at the last position, then algorithm behaves like worst case. Thus the

worst case time complexity is equal to the no. of comparison at worst case ie., equal to

O(n). The time complexity in best case is O(1).

The average case time complexity =(no. of comparisons required when the key is in

the first position + no. of comparisons required when the key is in second position+…+

no. of comparison when key is in nth position)/n

1 + 2 +

….n

n

n(n
1)

= 2n

Department of Computer Science & Engineering

=O(n)

Department of Computer Science & Engineering

Binary Search

Binary

Search(key)

Input: An unsorted array a[], n is the no.of elements, key indicates the element to be

searched

Output: Target element found status

DS: Array

1. Start

2. Start=0,end=n-1

3. Middle=(start+end)/2

4. While key!=a[middle] and start<end

1. If key>a[middle]

1. Start=middle+1

2.else

1. end= middle-1

3. end if

4. middle=(start+end)/2

5. end while

6. if key=a[middle]

1. print “the key is found at the position”

7. else

1. print “the key is not found”

8. end if

9. stop

HASHING

We have seen about different search techniques (linear search, binary search) where

search time is basically dependent on the no of elements and no. of comparisons

performed.

Hashing is a technique which gives constant search time. In hashing the key

value is stored in the hash table depending on the hash function. The hash function maps

the key into corresponding index of the array(hash table). The main idea behind

 any hashing technique is to find one-to-one

correspondence between a key value and an index in the hash table where the key value

can be placed. Mathematically, this can be expressed as shown in figure below where K

denotes a set of key values, I denotes a range of indices, and H denotes the mapping

function from K to I.

Department of Computer Science & Engineering

All key values are mapped into some indices and more than one key value may be

mapped into an index value. The function that governs this mapping is called the hash

function. There are two principal criteria in deciding hash function H:K->I as follows.

1) The function H should be very easy and quick to compute
2) It should be easy to implement

As an example let us consider a hash table of size 10 whose indices are

0,1,2,…9.Suppose a set of key values are 10,19,35,43,62,59,31,49,77,33.Let us

assume the hash function as stated below

1) Add the two digits in the key
2) Take the digit at the unit place of the result as index , ignore the digits at tenth

place if any

Using this hash function, the mapping from key values to indices and to hash tables are

shown below.

HASH FUNCTIONS

There are various methods to define hash function

Division method

One of the fast hashing functions, and perhaps the most widely accepted, is the

division method, which is defined as follows:

Department of Computer Science & Engineering

Choose a number h larger than the number n of keys in K. The hash function H is

then defined by

H(k)=k(MOD h) if indices start from 0

Or

H(k)=k(MOD h)+1 if indices start from 1

Department of Computer Science & Engineering

Where k€K, a key value. The operator MOD defines the modulo arithmetic operator

operation, which is equal to dividing k by h. For example if k=31 and h=13 then,

H(31)=31 MOD 13=5 (OR)

H(31)=31(MOD 13)+1=6

h is generally chosen to be a prime number and equal to the sizeof hash table

MID SQUARE METHOD

Another hash function which has been widely used in many applications is the mid

square method. The hash function H is defined by H(k)=x, where x is obtained by

selecting an appropriate number of bits or digits from the middle of the square of the

key value k. example-

k : 1234 2345 3456

k 2 : 1522756 549902511943936

H(k) : 525 492 933

For a three digit index requirement, after finding the square of key values,the digits at

2nd, 4th and 6th position are chosen as their hash values.

FOLDING METHOD

Another fair method for a hash function is folding method. In this method, the

key k is partitioned into a number of parts k 1 , k2..kn where each part has equal no.of

digits as the required address(index) width. Then these parts are added together in the

hash function.

H(k)=k1+k2+…+kn. Where the last carry, if any is ignored. There are mainly two

variations of this method.

1) fold shifting method

2) fold boundary method

Fold Shifting Method

In this method, after the partition even parts like k2, k4 are reversed before

addition.

Fold boundary method

Department of Computer Science & Engineering

In this method, after the partition the boundary parts are reversed before

addition

Example

-Assume size of each part is 2 then, the hash function is computed as follows

Key values k

:

1522756 5499025 11943936

Chopping : 01 52 27 56 05 49 90 25 11 94 39 36

Pure folding : 01+52+27+56=136 05+49+90+25=169 11+94+39+36=180

Fold

Shifting:

10+52+72+56=190 50+49+09+25=133 11+94+93+36=234

Fold
Boundary

:10+52+27+65=154 50+49+90+52=241 11+94+39+63=20
7

Department of Computer Science & Engineering

DIGIT ANALYSIS METHOD

This method is particularly useful in the case of static files where the key values of all

the records are known in advance. The basic idea of this hash function is to form hash

address by extracting and/or shifting the extracted digits of the key. For any given set of

keys, the position in the keys and the same rearrangement pattern must be used

consistently. The decision for extraction and rearrangement is finalized after analysis of

hash functions under different criteria.

Example: given a key value 6732541, it can be transformed to the hash address 427

by extracting the digits from even position. And then reversing this combination.ie 724

is the hash address.

Collision resolution and overflow handling techniques

There are several methods to resolve collision. Two important methods are

listed below:

1) Closed hashing(linear probing)

2) Open hashing (chaining)

CLOSED HASHING

Suppose there is a hash table of size h and the key value is mapped to location

i, with a hash function. The closed hashing can then be stated as follows.

Start with the hash address where the collision has occurred,let it be i.

Then carry out a sequential search in the order:- i, i+1,i+2..h,1,2…,i-1 The

search will continue until any one of the following occurs

 The key value is found

 An unoccupied location is found

 The searches reaches the location where search had started

The first case corresponds to successful search , and the other two case corresponds to

unsuccessful search.Here the hash table is considered circular, so that when the last

location is reached, the search proceeds to the first location of the table. This is why the

technique is termed closed hashing. Since the technique searches in a straight line, it is

alternatively termed as linear probing.

Example- Assume there is a hash table of size 10 and hash function uses the division

method of remainder modulo 7, namely H(k)=k(MOD 7)+1.The construction of hash

table for the key values 15,11,25,16,9,8,12,8 is illustrated below.

Department of Computer Science & Engineering

Drawback of closed hashing and its remedies

The major drawback of closed hashing is that as half of the hash table is filled,

there is a tendency towards clustering.That is key values are clustered in large

groups.and as a result sequential search becomes slower and slower. This kind of

clustering is known as primary clustering.

The following are some solutions to avoid this situation

1)Random

probing

2)Double

hashing

3)Quadratic

probing

Random Probing

Instead of using linear probing that generates sequential locations in order, a

random location is generated using random probing.

An example of pseudo random number generator that generates such a

random sequence is given below:

I=(i+m)MOD h+1

Department of Computer Science & Engineering

Where m and h are prime numbers. For example if m=5, and h=11 and initially=2

then random probing generates the sequence

8,3,9,4,10,5,11,6,1,7,2

Here all numbers are generated between 1 and 11 in a random order. Primary

clustering problem is solved. Where as there is an issue of clustering when two keys

are hashed into the same location and then they make use of the same sequence

locations generated by the random probing, which is called as secondary clustering

Department of Computer Science & Engineering

Double Hashing

An alternative approach to solve the problem of secondary clustering is to make use of

second hash function in addition to the first one. Suppose H1(k) is initially used hash

function and H2(k) is the second one. These two functions are defined as

H1(k)=(k MOD h)+1 H2(k)=(k

MOD (h-4))+1

Let h=11, and k=50 for an instance, then H1(50)=7

and H2(50)=2.

Now let k=28, then H1(28)=7 and H2(28)=5

Thus for the two key values hashing to the same location, rehashing generates two

different locations alleviating the problem of secondary clustering.

Quadratic Probing

It is a collision resolution method that eliminates the primary clustering

problem of linear probing. For linear probing, if there is a collision at location i, then the

next locations i+1, i+2..etc are probed.But in quadratic probing next locations to be

probed are i+12 ,i+22 ,i+32 ..etc . This method substantially reduces primary clustering,

but it doesn’t probe all the locations in the table.

Open Hashing

Closed hashing method for collision resolution deals with arrays as hash tables and thus

random positions can be quickly refer red. Two main disadvantages of closed hashing

are

1) It is very difficult to handle the problem of overflow in a satisfactory manner

2) The key values are haphazardly intermixed and, on the average majority of the

key values are from their hash locations increasing the number of probes which

degrades the overall performance

To resolve these problems another hashing method called open hashing or separate

chaining is used.

The chaining method uses hash table as an array of pointers. Each pointer points a

linked list. That is here the hash table is an array of list of headers. Illustrated below is

an example with hash table of size10.

Department of Computer Science & Engineering

For searching a key in hash table requires the following steps 1)Key is

applied to hash function

2) Hash function returns the starting address of a particular linked list(where

key may be present)

3) Then key is searched in that linked list

Performance Comparison Expected

Algorithm

Name

Best Case Average Case Worst Case

Quick Sort O(n log n) O(n log n) O(n 2)

Merge Sort O(n log n) O(n log n) O(n log n)

Heap Sort O(n log n) O(n log n) O(n log n)

Bubble Sort O(n) O(n 2) O(n 2)

Selection Sort O(n 2) O(n 2) O(n 2)

Insertion Sort O(n) O(n 2) O(n 2)

Binary Search O(1) O(log n) O(log n)

Linear Search O(1) O(n) O(n)

Department of Computer Science & Engineering

